OpenCMISS-Iron Internal API Documentation
constants Module Reference

This module contains all program wide constants. More...

Variables

real(dp), parameter euler =2.718281828459045235360287471352662497757_DP
 The double precision value of e. More...
 
real(dp), parameter pi =3.141592653589793238462643383279502884197_DP
 The double precision value of pi. More...
 
real(dp), parameter twopi =6.283185307179586476925286766559005768394_DP
 The double value of 2pi. More...
 
real(dp), parameter convergence_tolerance_dp =5.0_DP*EPSILON(1.0_DP)
 The convergence tolerance for double precision convergence calculations. Convergence tests should be of the form $\frac{|X_{i+1}-X_{i}|}{1+|X_{i}|}<\texttt{CONVERGENCE\_TOLERANCE}$ or for norms, $\frac{\|r\|}{\sqrt{n}+\|b\|}<\texttt{CONVERGENCE\_TOLERANCE}$. More...
 
real(dp), parameter convergence_tolerance =CONVERGENCE_TOLERANCE_DP
 
real(dp) loose_tolerance
 The loose tolerance for double precision convergence calculations. Loose tolerance is to be used in the same manner as CONSTANTS::CONVERGENCE_TOLERANCE when a looser criterion is desired. More...
 
real(dp), parameter zero_tolerance_dp =5.0_DP*EPSILON(1.0_DP)
 The zero tolerance for double precision zero tests i.e., if(abs(x)>zero_tolerance) then... More...
 
real(dp), parameter zero_tolerance =ZERO_TOLERANCE_DP
 
real(dp), parameter convergence_tolerance_sp =5.0_SP*EPSILON(1.0_SP)
 The convergence tolerance for single precision convergence calculations. Convergence tests should be of the form $\frac{|X_{i+1}-X_{i}|}{1+|X_{i}|}<\texttt{CONVERGENCE\_TOLERANCE}$ or for norms, $\frac{\|r\|}{\sqrt{n}+\|b\|}<\texttt{CONVERGENCE\_TOLERANCE}$. More...
 
real(sp) loose_tolerance_sp
 The loose tolerance for single precision convergence calculations. Loose tolerance is to be used in the same manner as CONSTANTS::CONVERGENCE_TOLERANCE_SP when a looser criterion is desired. More...
 
real(sp), parameter zero_tolerance_sp =5.0_SP*EPSILON(1.0_SP)
 The zero tolerance for single precision zero tests i.e., if(abs(x)>zero_tolerance) then... More...
 
integer(intg), parameter maxstrlen =255
 Maximum string length fro character strings. More...
 
integer(intg), parameter integer_type =1
 Integer data type. More...
 
integer(intg), parameter short_integer_type =2
 Short integer data type. More...
 
integer(intg), parameter long_integer_type =3
 Long integer data type. More...
 
integer(intg), parameter single_real_type =4
 Single precision real data type. More...
 
integer(intg), parameter double_real_type =5
 Double precision real data type. More...
 
integer(intg), parameter quadruple_real_type =6
 Quadruple precision real data type. More...
 
integer(intg), parameter character_type =7
 Character data type. More...
 
integer(intg), parameter logical_type =8
 Logical/boolean data type. More...
 
integer(intg), parameter single_complex_type =9
 Single precision complex data type. More...
 
integer(intg), parameter double_complex_type =10
 Double precision complex data type. More...
 
integer(intg), parameter quadruple_complex_type =11
 Quadruple precision complex data type. More...
 
integer(intg), parameter c_int_type =12
 C integer data type. More...
 
integer(intg), parameter big_endian_number =1
 Big endian number type. More...
 
integer(intg), parameter little_endian_number =2
 Little endian number type. More...
 
integer(intg), parameter ascii_character =1
 ASCII character type. More...
 
integer(intg), parameter unicode_character =2
 Unicode character type. More...
 
integer(intg), parameter twos_complement_integer =1
 Twos complement integer type. More...
 
integer(intg), parameter signed_magnitude_integer =2
 Signed magnitude integer type. More...
 
integer(intg), parameter spieee_number =1
 Single precision IEEE real type. More...
 
integer(intg), parameter dpieee_number =2
 Double precision IEEE real type. More...
 
integer(intg), parameter dec_computer =1
 Digital computer system type. More...
 
integer(intg), parameter sgi_computer =2
 Silicon Graphics computer system type. More...
 
integer(intg), parameter ibm_computer =3
 IBM system type. More...
 
integer(intg), parameter cray_computer =4
 Cray computer system type. More...
 
integer(intg), parameter pc_computer =5
 PC computer system type. More...
 
integer(intg), parameter unknown_computer =255
 Unknown computer system type. More...
 
integer(intg), parameter vms_os =1
 VMS operating system type. More...
 
integer(intg), parameter irix_os =2
 IRIX operating system type. More...
 
integer(intg), parameter windows_os =3
 Windows operating system type. More...
 
integer(intg), parameter linux_os =4
 Linux operating system type. More...
 
integer(intg), parameter aix_os =5
 AIX operating system type. More...
 
integer(intg), parameter unknown_os =255
 Unknown operating system type. More...
 
integer(intg), parameter library_cmiss_type =1
 CMISS (internal) library type. More...
 
integer(intg), parameter library_petsc_type =2
 PETSc library type. More...
 
integer(intg), parameter library_mumps_type =3
 MUMPS library type. More...
 
integer(intg), parameter library_superlu_type =4
 SuperLU library type. More...
 
integer(intg), parameter library_spooles_type =5
 SPOOLES library type. More...
 
integer(intg), parameter library_umfpack_type =6
 UMFPack library type. More...
 
integer(intg), parameter library_lusol_type =7
 LUSOL library type. More...
 
integer(intg), parameter library_essl_type =8
 ESSL library type. More...
 
integer(intg), parameter library_lapack_type =9
 LAPACK library type. More...
 
integer(intg), parameter library_tao_type =10
 TAO library type. More...
 
integer(intg), parameter library_hypre_type =11
 Hypre library type. More...
 
integer(intg), parameter library_pastix_type =12
 PaStiX library type. More...
 
integer(intg), parameter no_part_deriv =1
 No partial derivative i.e., u. More...
 
integer(intg), parameter first_part_deriv =2
 First partial derivative i.e., du/ds. More...
 
integer(intg), parameter second_part_deriv =3
 Second partial derivative i.e., d^2u/ds^2. More...
 
integer(intg), parameter third_part_deriv =4
 Third partial derivative i.e., d^3u/ds^3. More...
 
integer(intg), parameter part_deriv_s1 =2
 First partial derivative in the s1 direction i.e., du/ds1. More...
 
integer(intg), parameter part_deriv_s1_s1 =3
 Second partial derivative in the s1 direction i.e., d^2u/ds1ds1. More...
 
integer(intg), parameter part_deriv_s2 =4
 First partial derivative in the s2 direction i.e., du/ds2. More...
 
integer(intg), parameter part_deriv_s2_s2 =5
 Second partial derivative in the s2 direction i.e., d^2u/ds2ds2. More...
 
integer(intg), parameter part_deriv_s1_s2 =6
 Cross derivative in the s1 and s2 direction i.e., d^2u/ds1ds2. More...
 
integer(intg), parameter part_deriv_s3 =7
 First partial derivative in the s3 direction i.e., du/ds3. More...
 
integer(intg), parameter part_deriv_s3_s3 =8
 Second partial derivative in the s3 direction i.e., d^2u/ds3ds3. More...
 
integer(intg), parameter part_deriv_s1_s3 =9
 Cross derivative in the s1 and s3 direction i.e., d^2u/ds1ds3. More...
 
integer(intg), parameter part_deriv_s2_s3 =10
 Cross derivative in the s2 and s3 direction i.e., d^2u/ds2ds3. More...
 
integer(intg), parameter part_deriv_s1_s2_s3 =11
 Cross derivative in the s1, s2 and s3 direction i.e., d^3u/ds1ds2ds3. More...
 
integer(intg), parameter part_deriv_s4 =12
 First partial derivative in the s4 direction i.e., du/ds4. More...
 
integer(intg), parameter part_deriv_s4_s4 =13
 Second partial derivative in the s4 direction i.e., d^2u/ds4ds4. More...
 
integer(intg), parameter part_deriv_s1_s4 =14
 Cross derivative in the s1 and s4 direction i.e., d^2u/ds1ds4. More...
 
integer(intg), parameter part_deriv_s2_s4 =15
 Cross derivative in the s2 and s4 direction i.e., d^2u/ds2ds4. More...
 
integer(intg), parameter part_deriv_s3_s4 =16
 Cross derivative in the s3 and s4 direction i.e., d^2u/ds3ds4. More...
 
integer(intg), parameter part_deriv_s1_s2_s4 =17
 Cross derivative in the s1, s2 and s4 direction i.e., d^3u/ds1ds2ds4. More...
 
integer(intg), parameter part_deriv_s1_s3_s4 =18
 Cross derivative in the s1, s3 and s4 direction i.e., d^3u/ds1ds3ds4. More...
 
integer(intg), parameter part_deriv_s2_s3_s4 =19
 Cross derivative in the s2, s3 and s4 direction i.e., d^3u/ds2ds3ds4. More...
 
integer(intg), parameter part_deriv_s1_s4_s4 =20
 Cross derivative in the s2, s4 and s4 direction i.e., d^3u/ds1ds4^2. More...
 
integer(intg), parameter part_deriv_s2_s4_s4 =21
 Cross derivative in the s2, s4 and s4 direction i.e., d^3u/ds2ds4^2. More...
 
integer(intg), parameter part_deriv_s3_s4_s4 =22
 Cross derivative in the s3, s4 and s4 direction i.e., d^3u/ds3ds4^2. More...
 
integer(intg), parameter part_deriv_s4_s4_s4 =23
 Third partial derivative in the s4 direction i.e., d^3u/ds4^3. More...
 
integer(intg), parameter maximum_global_deriv_number =8
 The maximum global derivative number. More...
 
integer(intg), parameter no_global_deriv =1
 No global derivative i.e., u. More...
 
integer(intg), parameter global_deriv_s1 =2
 First global derivative in the s1 direction i.e., du/ds1. More...
 
integer(intg), parameter global_deriv_s2 =3
 First global derivative in the s2 direction i.e., du/ds2. More...
 
integer(intg), parameter global_deriv_s1_s2 =4
 Global Cross derivative in the s1 and s2 direction i.e., d^2u/ds1ds2. More...
 
integer(intg), parameter global_deriv_s3 =5
 First global derivative in the s3 direction i.e., du/ds3. More...
 
integer(intg), parameter global_deriv_s1_s3 =6
 Global Cross derivative in the s1 and s3 direction i.e., d^2u/ds1ds3. More...
 
integer(intg), parameter global_deriv_s2_s3 =7
 Global Cross derivative in the s2 and s3 direction i.e., d^2u/ds2ds3. More...
 
integer(intg), parameter global_deriv_s1_s2_s3 =8
 Cross derivative in the s1, s2 and s3 direction i.e., d^3u/ds1ds2ds3. More...
 
integer(intg), parameter maximum_physical_deriv_number =2
 The maximum physical derivative number. More...
 
integer(intg), parameter no_physical_deriv =1
 No physical derivative i.e., u. More...
 
integer(intg), parameter gradient_physical_deriv =2
 Gradient physical derivative i.e., grad u. More...
 
integer(intg), dimension(23, 4) partial_derivative_index = RESHAPE( [ NO_PART_DERIV,FIRST_PART_DERIV,SECOND_PART_DERIV,NO_PART_DERIV,NO_PART_DERIV, FIRST_PART_DERIV,NO_PART_DERIV,NO_PART_DERIV,FIRST_PART_DERIV,NO_PART_DERIV, FIRST_PART_DERIV,NO_PART_DERIV,NO_PART_DERIV,FIRST_PART_DERIV,NO_PART_DERIV, NO_PART_DERIV,FIRST_PART_DERIV,FIRST_PART_DERIV,NO_PART_DERIV,FIRST_PART_DERIV, NO_PART_DERIV,NO_PART_DERIV,NO_PART_DERIV, NO_PART_DERIV,NO_PART_DERIV,NO_PART_DERIV,FIRST_PART_DERIV,SECOND_PART_DERIV, FIRST_PART_DERIV,NO_PART_DERIV,NO_PART_DERIV,NO_PART_DERIV,FIRST_PART_DERIV, FIRST_PART_DERIV,NO_PART_DERIV,NO_PART_DERIV,NO_PART_DERIV,FIRST_PART_DERIV, NO_PART_DERIV,FIRST_PART_DERIV,NO_PART_DERIV,FIRST_PART_DERIV,NO_PART_DERIV, FIRST_PART_DERIV,NO_PART_DERIV,NO_PART_DERIV, NO_PART_DERIV,NO_PART_DERIV,NO_PART_DERIV,NO_PART_DERIV,NO_PART_DERIV, NO_PART_DERIV,FIRST_PART_DERIV,SECOND_PART_DERIV,FIRST_PART_DERIV,FIRST_PART_DERIV, FIRST_PART_DERIV,NO_PART_DERIV,NO_PART_DERIV,NO_PART_DERIV,NO_PART_DERIV, FIRST_PART_DERIV,NO_PART_DERIV,FIRST_PART_DERIV,FIRST_PART_DERIV,NO_PART_DERIV, NO_PART_DERIV,FIRST_PART_DERIV,NO_PART_DERIV, NO_PART_DERIV,NO_PART_DERIV,NO_PART_DERIV,NO_PART_DERIV,NO_PART_DERIV, NO_PART_DERIV,NO_PART_DERIV,NO_PART_DERIV,NO_PART_DERIV,NO_PART_DERIV, NO_PART_DERIV,FIRST_PART_DERIV,SECOND_PART_DERIV,FIRST_PART_DERIV,FIRST_PART_DERIV, FIRST_PART_DERIV,FIRST_PART_DERIV,FIRST_PART_DERIV,FIRST_PART_DERIV,SECOND_PART_DERIV, SECOND_PART_DERIV,SECOND_PART_DERIV,THIRD_PART_DERIV ], [23,4])
 Partial derivative index map. PARTIAL_DERIVATIVE_INDEX(idx,nic) gives the order of the partial derivative in the ni(c)'th direction for the idx'th partial derivative value. More...
 
integer(intg), dimension(4) partial_derivative_first_derivative_map = [ PART_DERIV_S1,PART_DERIV_S2,PART_DERIV_S3,PART_DERIV_S4 ]
 PARTIAL_DERIVATIVE_FIRST_DERIVATIVE_MAP(nic) gives the partial derivative index for the first derivative in the ni(c)'th direction. More...
 
integer(intg), dimension(4) partial_derivative_second_derivative_map = [ PART_DERIV_S1_S1,PART_DERIV_S2_S2,PART_DERIV_S3_S3, PART_DERIV_S4_S4 ]
 PARTIAL_DERIVATIVE_SECOND_DERIVATIVE_MAP(nic) gives the partial derivative index for the second derivative in the ni(c)'th direction. More...
 
integer(intg), dimension(4) partial_derivative_maximum_map = [ PART_DERIV_S1_S1,PART_DERIV_S1_S2,PART_DERIV_S1_S2_S3, PART_DERIV_S4_S4_S4 ]
 PARTIAL_DERIVATIVE_MAXIMUM_MAP(nic) gives the maximum of partial derivative index for the the ni(c)'th direction. More...
 
integer(intg), dimension(20) partial_derivative_global_derivative_map = [ NO_GLOBAL_DERIV,GLOBAL_DERIV_S1,0,GLOBAL_DERIV_S2,0, GLOBAL_DERIV_S1_S2,GLOBAL_DERIV_S3,0,GLOBAL_DERIV_S1_S3,GLOBAL_DERIV_S2_S3,GLOBAL_DERIV_S1_S2_S3,0,0,0,0,0,0,0,0,0 ]
 PARTIAL_DERIVATIVE_GLOBAL_DERIVATIVE_MAP(nu) gives the global derivative index for the the nu'th partial derivative. If no global derivative exists the map is zero. More...
 
integer(intg), dimension(8) global_derivative_partial_derivative_map = [ NO_PART_DERIV,PART_DERIV_S1,PART_DERIV_S2,PART_DERIV_S1_S2, PART_DERIV_S3,PART_DERIV_S1_S3,PART_DERIV_S2_S3,PART_DERIV_S1_S2_S3]
 GLOBAL_DERIVATIVE_PARTIAL_DERIVATIVE_MAP(nk) gives the partial derivative index for the the nk'th global derivative. More...
 
integer(intg), dimension(3) global_derivative_maximum_map = [ GLOBAL_DERIV_S1,GLOBAL_DERIV_S1_S2,GLOBAL_DERIV_S1_S2_S3 ]
 GLOBAL_DERIVATIVE_MAXIMUM_MAP(ni) gives the maximum of global derivative index for the the ni'th direction. More...
 
integer(intg), dimension(2) other_xi_directions2 = [ 2,1 ]
 OTHER_XI_DIRECTIONS2(ni) gives the other xi direction for direction ni for a two dimensional element. More...
 
integer(intg), dimension(3, 3, 2) other_xi_directions3 = RESHAPE([ 1,2,3,2,1,1,3,3,2,0,3,2,3,0,1,2,1,0 ], [3,3,2])
 OTHER_XI_DIRECTIONS3(ni,nii,type) gives the other xi directions for direction ni for a three dimensional element. When type=1 then the nii index gives the other two xi directions (for nii=2,3) and when type=2 then ni and nii are used to give the third xi direction. More...
 
integer(intg), dimension(4, 3) other_xi_directions4 = RESHAPE([ 2,3,4,1,3,4,1,2,4,1,2,3 ], [4,3])
 OTHER_XI_DIRECTIONS4(nic,nii) gives the other xi coordinates for coordinate nic for a simplex element. More...
 
integer(intg), dimension(2) other_xi_orientations2 = [1,-1]
 OTHER_XI_ORIENTATIONSS2(ni) gives the orientation of the given xi direction and the other xi direction. Is equal to leviCivita(ni,OTHER_XI_DIRECTIONS2(ni)) where leviCivita is the Levi-Civita or alternating symbol. More...
 
integer(intg), dimension(3, 3) other_xi_orientations3 = RESHAPE([0,-1,1,1,0,-1,-1,1,0], [3,3])
 OTHER_XI_ORIENTATIONSS3(ni,nii) gives the orientation of the given two xi directions. Is equal to leviCivita(ni,nii,OTHER_XI_DIRECTIONS3(ni,nii,2)) where leviCivita is the Levi-Civita or alternating symbol. More...
 
integer(intg), dimension(2, 2), parameter tensor_to_voigt2 =RESHAPE([1,3,3,2], [2,2])
 
integer(intg), dimension(2, 3), parameter voigt_to_tensor2 =RESHAPE([1,1,2,2,1,2], [2,3])
 
integer(intg), dimension(3, 3), parameter tensor_to_voigt3 =RESHAPE([1,4,5,4,2,6,5,6,3], [3,3])
 
integer(intg), dimension(2, 6), parameter voigt_to_tensor3 =RESHAPE([1,1,2,2,3,3,1,2,1,3,2,3], [2,6])
 

Detailed Description

This module contains all program wide constants.

Variable Documentation

integer(intg), dimension(3) constants::global_derivative_maximum_map = [ GLOBAL_DERIV_S1,GLOBAL_DERIV_S1_S2,GLOBAL_DERIV_S1_S2_S3 ]

GLOBAL_DERIVATIVE_MAXIMUM_MAP(ni) gives the maximum of global derivative index for the the ni'th direction.

Definition at line 269 of file constants.f90.

integer(intg), dimension(8) constants::global_derivative_partial_derivative_map = [ NO_PART_DERIV,PART_DERIV_S1,PART_DERIV_S2,PART_DERIV_S1_S2, PART_DERIV_S3,PART_DERIV_S1_S3,PART_DERIV_S2_S3,PART_DERIV_S1_S2_S3]

GLOBAL_DERIVATIVE_PARTIAL_DERIVATIVE_MAP(nk) gives the partial derivative index for the the nk'th global derivative.

Definition at line 265 of file constants.f90.

integer(intg), dimension(2) constants::other_xi_directions2 = [ 2,1 ]

OTHER_XI_DIRECTIONS2(ni) gives the other xi direction for direction ni for a two dimensional element.

Definition at line 273 of file constants.f90.

Referenced by basis_routines::basis_collapsed_xi_set_ptr(), and basis_routines::basis_lhtpbasiscreate().

integer(intg), dimension(3,3,2) constants::other_xi_directions3 = RESHAPE([ 1,2,3,2,1,1,3,3,2,0,3,2,3,0,1,2,1,0 ], [3,3,2])

OTHER_XI_DIRECTIONS3(ni,nii,type) gives the other xi directions for direction ni for a three dimensional element. When type=1 then the nii index gives the other two xi directions (for nii=2,3) and when type=2 then ni and nii are used to give the third xi direction.

Definition at line 275 of file constants.f90.

Referenced by basis_routines::basis_collapsed_xi_set_ptr(), basis_routines::basis_lhtp_family_create(), basis_routines::basis_lhtpbasiscreate(), basis_routines::basis_quadrature_create(), basis_routines::basis_simplex_family_create(), finite_elasticity_routines::finiteelasticity_surfacepressurejacobianevaluate(), and finite_elasticity_routines::finiteelasticity_surfacepressureresidualevaluate().

integer(intg), dimension(4,3) constants::other_xi_directions4 = RESHAPE([ 2,3,4,1,3,4,1,2,4,1,2,3 ], [4,3])

OTHER_XI_DIRECTIONS4(nic,nii) gives the other xi coordinates for coordinate nic for a simplex element.

Definition at line 277 of file constants.f90.

integer(intg), dimension(2) constants::other_xi_orientations2 = [1,-1]

OTHER_XI_ORIENTATIONSS2(ni) gives the orientation of the given xi direction and the other xi direction. Is equal to leviCivita(ni,OTHER_XI_DIRECTIONS2(ni)) where leviCivita is the Levi-Civita or alternating symbol.

Definition at line 279 of file constants.f90.

integer(intg), dimension(3,3) constants::other_xi_orientations3 = RESHAPE([0,-1,1,1,0,-1,-1,1,0], [3,3])

OTHER_XI_ORIENTATIONSS3(ni,nii) gives the orientation of the given two xi directions. Is equal to leviCivita(ni,nii,OTHER_XI_DIRECTIONS3(ni,nii,2)) where leviCivita is the Levi-Civita or alternating symbol.

Definition at line 280 of file constants.f90.

Referenced by finite_elasticity_routines::finiteelasticity_surfacepressurejacobianevaluate(), and finite_elasticity_routines::finiteelasticity_surfacepressureresidualevaluate().

integer(intg), dimension(4) constants::partial_derivative_first_derivative_map = [ PART_DERIV_S1,PART_DERIV_S2,PART_DERIV_S3,PART_DERIV_S4 ]

PARTIAL_DERIVATIVE_FIRST_DERIVATIVE_MAP(nic) gives the partial derivative index for the first derivative in the ni(c)'th direction.

Definition at line 254 of file constants.f90.

Referenced by advection_diffusion_equation_routines::advectiondiffusion_finiteelementcalculate(), biodomain_equation_routines::biodomain_equation_finite_element_calculate(), burgers_equation_routines::burgers_finiteelementjacobianevaluate(), burgers_equation_routines::burgers_finiteelementresidualevaluate(), coordinate_routines::coordinate_metrics_calculate(), coordinate_routines::coordinate_system_normal_calculate(), darcy_equations_routines::darcy_equation_finite_element_calculate(), darcy_equations_routines::darcy_equation_impermeable_bc_via_penalty(), darcy_pressure_equations_routines::darcypressure_finiteelementresidualevaluate(), diffusion_equation_routines::diffusion_equation_finite_element_calculate(), diffusion_equation_routines::diffusion_finiteelementresidualevaluate(), finite_elasticity_routines::finite_elasticity_gauss_dfdz(), finite_elasticity_routines::finiteelasticity_finiteelementjacobianevaluate(), finite_elasticity_routines::finiteelasticity_finiteelementresidualevaluate(), finite_elasticity_routines::finiteelasticity_surfacepressurejacobianevaluate(), fitting_routines::fitting_finite_element_calculate(), fitting_routines::fitting_gauss_deformation_gradient_tensor(), helmholtz_equations_routines::HELMHOLTZ_EQUATION_FINITE_ELEMENT_CALCULATE::helmholtz_equation_finite_element_calculate(), hamilton_jacobi_equations_routines::HJ_EQUATION_FAST_MARCHING_CALCULATE::hj_equation_fast_marching_calculate(), hamilton_jacobi_equations_routines::HJ_EQUATION_FINITE_ELEMENT_CALCULATE::hj_equation_finite_element_calculate(), laplace_equations_routines::laplaceequation_finiteelementcalculate(), linear_elasticity_routines::linear_elasticity_finite_element_calculate(), monodomain_equations_routines::Monodomain_FiniteElementCalculate::monodomain_finiteelementcalculate(), navier_stokes_equations_routines::NavierStokes_CalculateElementMetrics::navierstokes_calculateelementmetrics(), navier_stokes_equations_routines::NavierStokes_FiniteElementJacobianEvaluate::navierstokes_finiteelementjacobianevaluate(), navier_stokes_equations_routines::NavierStokes_FiniteElementResidualEvaluate::navierstokes_finiteelementresidualevaluate(), navier_stokes_equations_routines::NavierStokes_ResidualBasedStabilisation::navierstokes_residualbasedstabilisation(), poisson_equations_routines::poisson_equation_finite_element_calculate(), poisson_equations_routines::poisson_finiteelementresidualevaluate(), reaction_diffusion_equation_routines::ReactionDiffusion_FiniteElementCalculate::reactiondiffusion_finiteelementcalculate(), and stokes_equations_routines::stokes_finite_element_calculate().

integer(intg), dimension(20) constants::partial_derivative_global_derivative_map = [ NO_GLOBAL_DERIV,GLOBAL_DERIV_S1,0,GLOBAL_DERIV_S2,0, GLOBAL_DERIV_S1_S2,GLOBAL_DERIV_S3,0,GLOBAL_DERIV_S1_S3,GLOBAL_DERIV_S2_S3,GLOBAL_DERIV_S1_S2_S3,0,0,0,0,0,0,0,0,0 ]

PARTIAL_DERIVATIVE_GLOBAL_DERIVATIVE_MAP(nu) gives the global derivative index for the the nu'th partial derivative. If no global derivative exists the map is zero.

Definition at line 262 of file constants.f90.

integer(intg), dimension(23,4) constants::partial_derivative_index = RESHAPE( [ NO_PART_DERIV,FIRST_PART_DERIV,SECOND_PART_DERIV,NO_PART_DERIV,NO_PART_DERIV, FIRST_PART_DERIV,NO_PART_DERIV,NO_PART_DERIV,FIRST_PART_DERIV,NO_PART_DERIV, FIRST_PART_DERIV,NO_PART_DERIV,NO_PART_DERIV,FIRST_PART_DERIV,NO_PART_DERIV, NO_PART_DERIV,FIRST_PART_DERIV,FIRST_PART_DERIV,NO_PART_DERIV,FIRST_PART_DERIV, NO_PART_DERIV,NO_PART_DERIV,NO_PART_DERIV, NO_PART_DERIV,NO_PART_DERIV,NO_PART_DERIV,FIRST_PART_DERIV,SECOND_PART_DERIV, FIRST_PART_DERIV,NO_PART_DERIV,NO_PART_DERIV,NO_PART_DERIV,FIRST_PART_DERIV, FIRST_PART_DERIV,NO_PART_DERIV,NO_PART_DERIV,NO_PART_DERIV,FIRST_PART_DERIV, NO_PART_DERIV,FIRST_PART_DERIV,NO_PART_DERIV,FIRST_PART_DERIV,NO_PART_DERIV, FIRST_PART_DERIV,NO_PART_DERIV,NO_PART_DERIV, NO_PART_DERIV,NO_PART_DERIV,NO_PART_DERIV,NO_PART_DERIV,NO_PART_DERIV, NO_PART_DERIV,FIRST_PART_DERIV,SECOND_PART_DERIV,FIRST_PART_DERIV,FIRST_PART_DERIV, FIRST_PART_DERIV,NO_PART_DERIV,NO_PART_DERIV,NO_PART_DERIV,NO_PART_DERIV, FIRST_PART_DERIV,NO_PART_DERIV,FIRST_PART_DERIV,FIRST_PART_DERIV,NO_PART_DERIV, NO_PART_DERIV,FIRST_PART_DERIV,NO_PART_DERIV, NO_PART_DERIV,NO_PART_DERIV,NO_PART_DERIV,NO_PART_DERIV,NO_PART_DERIV, NO_PART_DERIV,NO_PART_DERIV,NO_PART_DERIV,NO_PART_DERIV,NO_PART_DERIV, NO_PART_DERIV,FIRST_PART_DERIV,SECOND_PART_DERIV,FIRST_PART_DERIV,FIRST_PART_DERIV, FIRST_PART_DERIV,FIRST_PART_DERIV,FIRST_PART_DERIV,FIRST_PART_DERIV,SECOND_PART_DERIV, SECOND_PART_DERIV,SECOND_PART_DERIV,THIRD_PART_DERIV ], [23,4])

Partial derivative index map. PARTIAL_DERIVATIVE_INDEX(idx,nic) gives the order of the partial derivative in the ni(c)'th direction for the idx'th partial derivative value.

Definition at line 232 of file constants.f90.

Referenced by basis_routines::basis_lhtp_basis_evaluate_dp(), basis_routines::basis_simplex_basis_derivative_evaluate(), and field_io_routines::field_io_export_nodal_group_header_fortran().

integer(intg), dimension(4) constants::partial_derivative_maximum_map = [ PART_DERIV_S1_S1,PART_DERIV_S1_S2,PART_DERIV_S1_S2_S3, PART_DERIV_S4_S4_S4 ]

PARTIAL_DERIVATIVE_MAXIMUM_MAP(nic) gives the maximum of partial derivative index for the the ni(c)'th direction.

Definition at line 259 of file constants.f90.

integer(intg), dimension(4) constants::partial_derivative_second_derivative_map = [ PART_DERIV_S1_S1,PART_DERIV_S2_S2,PART_DERIV_S3_S3, PART_DERIV_S4_S4 ]

PARTIAL_DERIVATIVE_SECOND_DERIVATIVE_MAP(nic) gives the partial derivative index for the second derivative in the ni(c)'th direction.

Definition at line 256 of file constants.f90.

Referenced by coordinate_routines::coordinate_metrics_calculate(), and coordinate_routines::coordinate_system_normal_calculate().

integer(intg), dimension(2,2), parameter constants::tensor_to_voigt2 =RESHAPE([1,3,3,2], [2,2])

Definition at line 284 of file constants.f90.

integer(intg), dimension(3,3), parameter constants::tensor_to_voigt3 =RESHAPE([1,4,5,4,2,6,5,6,3], [3,3])
integer(intg), dimension(2,3), parameter constants::voigt_to_tensor2 =RESHAPE([1,1,2,2,1,2], [2,3])

Definition at line 285 of file constants.f90.

integer(intg), dimension(2,6), parameter constants::voigt_to_tensor3 =RESHAPE([1,1,2,2,3,3,1,2,1,3,2,3], [2,6])